Krasnodar, Krasnodar, Russian Federation
UDC 528.44
The scientific article discusses the features of marking real estate objects obtained on orthophotos using the Label Studio tool, as well as the introduction of artificial intelligence into software to improve work with spatial data and the creation of an appropriate methodology. The study presents the stages of marking, including information preparation, interface setup, as well as methods and technologies that help improve accuracy, efficiency and optimization, simplify data application. Users will be able to solve various types of problems, such as classification, segmentation, detection and tagging, which allow you to accurately mark the boundaries of real estate objects and reduce work time. The implementation of the practical part provides an analysis of the obtained research results, which is aimed at solving the problem of large-scale determination of accurate information about spatial data. The tool is easy to use and supports integration with various machine learning systems. Using annotated data to train the detection model, it is possible to provide automated selection of real estate boundaries. The obtained research results show that the use of Label Studio contributes to the development and expansion of capabilities for the development of remote sensing projects. The article will be relevant to specialists involved in geoinformation technologies, orthophotography, image interpretation, and also those reviewing information about real estate objects.
real estate objects, artificial intelligence, data markup, spatial data, machine learning, orthophotos
1. Alyab'ev A.A., Litvincev K.A., Kobzev A.A. Fotogrammetriya v kadastre nedvizhimosti. Geodeziya i kartografiya. 2021;82(8):27-35.
2. Besshaposhnikov N.O., Kuz'menko M.A., Leonov A.G., Matyushin M.A. Avtomatizaciya razmetki nabora dannyh dlya neyronnyh setey. Vestnik kibernetiki. 2018; 32(4):204-210.
3. Bryazgin G.K. Metodika izvlecheniya konturov zdaniy iz off-nadir metodami glubokogo obucheniya. Flagman nauki. 2025;1(24):309-314.
4. Glebova E.A.1, Haytbaeva A.B. Razmetka ob'ektov na izobrazhenii dlya mashinnogo obucheniya: sravnenie segmentacii i detekcii. Informacionno-telekommunikacionnye sistemy i tehnologii. 2024:148-150.
5. Gordienko A.S. Issledovanie svobodnogo programmnogo obespecheniya dlya fotogrammetricheskoy obrabotki aerosnimkov. Interekspo GEO-Sibir'. 2024;4(1):64-68.
6. Gura D.A. Primenenie tehnologiy iskusstvennogo intellekta v kadastre i geodezii: sovremennoe sostoyanie i perspektivy. Vestnik SGUGIT (Sibirskogo gosudarstvennogo universiteta geosistem i tehnologiy). 2025;30(1):126-136.
7. Gura D.A. Primenenie tehnologiy mashinnogo obucheniya dlya raspoznavaniya krysh ob'ektov nedvizhimosti. Cifrovye, komp'yuternye i informacionnye tehnologii v nauke i obrazovanii. 2023:301-309
8. Zhigalov K.Yu., Markova S.V. Ispol'zovanie sistem iskusstvennogo intellekta dlya avtomatizirovannogo obnovleniya kartograficheskogo materiala v real'nom vremeni. Moskovskiy ekonomicheskiy zhurnal. 2021;1:3.
9. Zaripova D.N. Primenenie svertochnyh neyronnyh setey (CNN) dlya detekcii ob'ektov na aerosnimkah. Vestnik nauki. 2025;2(5(86)):808-815.
10. Katermina T.S., Ferbert I.I. Razrabotka programm dlya razmetki i prosmotra metok na izobrazhenii dlya sozdaniya nabora dannyh. Sovremennoe programmirovanie. 2024:54-59.
11. Labincev A.I., Shabalin M.S. Optimizaciya modeley detekcii ob'ektov na snimkah bespilotnyh letatel'nyh apparatov. Obrazovatel'nyy nauchnyy forum "Vratami uchenosti". 2024:58-60.
12. Nabiullin D.A., Kononova V.V., Novikova S.V. Metod avtomatizirovannoy razmetki bol'shih dannyh s ispol'zovaniem neyronnyh setey. Vestnik tehnologicheskogo universiteta. 2021; 24(6):103-107.
13. Palastrova V.Yu. Osobennosti modeli neyronnoy seti dlya detekcii ob'ektov na izobrazhenii. Problemy i perspektivy razvitiya APK regiona. 2023:143-148.
14. Pirimov Zh.Zh., Sherkulov Sh.Zh.U. Zarubezhnyy opyt ispol'zovaniya aerokosmicheskih snimkov pri sozdanii ortofotoplanov razlichnyh masshtabov. Aktual'nye problemy sovremennoy nauki 2022;6(126):30-33.
15. Chibunichev A.G., Kobzev A.A. Issledovanie vozmozhnosti sovmestnoy fotogrammetricheskoy obrabotki raznovremennyh aerosnimkov. Izvestiya vysshih uchebnyh zavedeniy. Geodeziya i aerofotos'emka. 2021;65(3):292-301.
16. Fedulin A.M., Voloshina N.V. Fast labeling pipeline approach for a huge aerial sensed dataset. Scientific and technical journal of information technologies, mechanics and optics. 2024; 24(2):190-197.