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Аннотация. В данной статье рассматривается применение математического 

моделирования для анализа и прогнозирования распространения 

инфекционных заболеваний, с акцентом на модели SIR (Susceptible–

Infectious–Recovered — восприимчивые, инфицированные, выздоровевшие), 

которая широко используется в эпидемиологии. Представлен общий обзор 

модели, после чего выводятся три ее фундаментальных дифференциальных 

уравнения, описывающие динамику изменения численности каждой из групп 

населения. Численные решения получены с использованием метода Эйлера 

для двух примерных случаев, результаты которых затем анализируются с 

целью выявления пика эпидемии и момента начала ее спада. Дополнительно 

исследуется взаимосвязь между величиной пика и исходным числом 

восприимчивых индивидов с помощью графического анализа. В статье 

обсуждаются ограничения как самой модели SIR, так и метода Эйлера, 

подчеркивается, что выбор параметров, таких как коэффициенты заражения 

и восстановления, существенно влияет на результаты моделирования. Цель 

работы — углубить понимание механизмов распространения заболеваний и 



Московский экономический журнал. № № 11. 2025 

Moscow economic journal. №  № 11. 2025 

47 
 

продемонстрировать, как математические методы могут способствовать 

разработке эффективных стратегий контроля и управления эпидемиями. 

Кроме того, исследование обращает внимание на практическое значение 

математического моделирования в эпидемиологии: применение подобных 

моделей позволяет прогнозировать возможные сценарии развития эпидемии, 

оценивать эффективность профилактических мер (вакцинации, изоляции, 

ограничения контактов) и оптимизировать распределение ресурсов 

здравоохранения. Использование модели SIR служит основой для построения 

более сложных моделей — SEIR, SIRS, SEIRD и других, что делает ее 

фундаментальным инструментом для дальнейших исследований в области 

динамики инфекционных процессов. 

Abstract. This article examines the use of mathematical modeling for analyzing 

and predicting the spread of infectious diseases, focusing on the SIR (Susceptible–

Infectious–Recovered) model, which is widely used in epidemiology. A general 

overview of the model is presented, followed by the derivation of its three 

fundamental differential equations that describe the dynamics of changes in each 

population group. Numerical solutions are obtained using Euler’s method for two 

sample cases, and the results are then analyzed to determine the epidemic peak and 

the point at which it begins to decline. Additionally, the relationship between the 

height of the peak and the initial number of susceptible individuals is investigated 

through graphical analysis. The paper discusses the limitations of both the SIR 

model and Euler’s method, emphasizing that the choice of parameters—such as 

infection and recovery rates—significantly affects the modeling results. The 

purpose of this work is to deepen the understanding of disease transmission 

mechanisms and to demonstrate how mathematical methods can support the 

development of effective epidemic control and management strategies. 

Furthermore, the study highlights the practical importance of mathematical 

modeling in epidemiology: such models make it possible to predict potential 

epidemic scenarios, assess the effectiveness of preventive measures (vaccination, 
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isolation, contact restrictions), and optimize the allocation of healthcare resources. 

The SIR model also serves as a foundation for constructing more complex 

models—such as SEIR, SIRS, SEIRD, and others—making it a fundamental tool 

for further research into the dynamics of infectious processes. 

Ключевые слова: численный анализ, моделирование эпидемий, модель SIR, 

динамика заболевания, пиковая заболеваемость, инфекционные заболевания, 

метод Эйлера, восприимчивые и инфицированные, управление 

эпидемическим процессом 

Keywords: numerical analysis, epidemic modeling, SIR model, disease dynamics, 

peak incidence, infectious diseases, Euler’s method, susceptible and infected, 

epidemic management 

Introduction 

Epidemics have been a persistent challenge throughout human history, 

claiming millions of lives through diseases such as plague, cholera, and typhoid. 

Despite significant advances in medicine, new epidemics continue to emerge, some 

spreading at alarming rates and causing profound societal and economic 

disruptions. While many infections are relatively mild, others—such as COVID-19 

and AIDS—have had catastrophic global effects. A common challenge in epidemic 

control is the rapid spread of diseases, often outpacing both population growth and 

timely interventions. Understanding the dynamics of disease transmission is 

therefore crucial for formulating effective strategies for containment and 

eradication. 

The relevance of mathematical models in addressing these challenges has been 

well-documented across numerous studies. Anderson and May (1991) laid 

foundational work in understanding how diseases spread and how mathematical 

models, particularly the SIR model, can inform control strategies [1]. Keeling and 

Rohani (2008) further refined these models by exploring both theoretical 

frameworks and practical applications, making their insights indispensable for the 

current study [8]. The SIR model’s development by Kermack and McKendrick 
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(1927) marked a pivotal moment in epidemic modeling, providing a simple yet 

powerful tool for understanding the progression of infectious diseases [7]. This 

model, as elaborated by Diekmann et al. (2013), remains central to epidemiological 

research today, with its influence extending to numerous subsequent developments 

in the field [4]. 

Murray (2002) contributes a broader understanding of mathematical biology, 

extending the foundational knowledge of epidemic modeling to a variety of 

biological systems, which helps contextualize the dynamics observed in human 

populations [9]. Brauer et al. (2019) offer additional insights into mathematical 

models in epidemiology, discussing the intricacies and limitations of models like 

the SIR in predicting real-world epidemic outcomes [2]. Ferguson et al. (2005) 

illustrate the practical application of such models in pandemic scenarios, 

particularly in assessing the effectiveness of mitigation strategies [5]. Colizza et al. 

(2007) take a different approach by incorporating network theory, showing how 

transportation systems can accelerate the global spread of epidemics, which further 

emphasizes the complexity of predicting disease dynamics [3]. 

In light of these contributions, this article explores the application of 

mathematical methods to the analysis and forecasting of epidemic behavior, with a 

particular focus on the SIR model. The discussion begins with an overview of the 

model and the mathematical derivation of its three fundamental differential 

equations. Euler’s method is then employed to obtain numerical solutions for two 

example scenarios. These results are analyzed to identify key points in the 

epidemic curve, such as the peak and the point of decline, with particular attention 

paid to how the initial number of susceptible individuals influences these 

outcomes. Graphical representations support the analysis, illustrating how different 

parameters can alter the trajectory of an epidemic. The article also critically 

examines the limitations of both the SIR model and Euler’s method, highlighting 

how variations in parameter choices can impact numerical solutions and the 

accuracy of predictions. By combining theoretical insights and practical 
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applications, this article contributes to the ongoing dialogue on how mathematical 

models can enhance our understanding of epidemic dynamics and guide public 

health responses. 

1. The SIR Model: Concepts and Mathematical Foundations 

The SIR (Susceptible-Infectious-Removed) model belongs to the class of 

compartmental methods because it divides the entire population potentially 

involved in the spread of a disease into major groups (compartments). 

In fact, the SIR model can be applied not only to people but also to animals and 

plants. 

The basic SIR model divides the population into three compartments: 

susceptible, infected, and recovered [6]. 

The first compartment,  , comprises individuals susceptible to the disease—

that is, those who can get sick. Quite often, at the onset of a disease, this group 

includes the entire population of a country, region, town, and similar areas, except 

for those already infected. Also, a portion of the population may be immune to the 

disease, such as through vaccination, so they won’t be in the   group. 

The second compartment,  , includes individuals who are already infectious—

in other words, those who are currently sick and can transmit the disease. 

The third compartment,  , consists of individuals who were either immune 

from the beginning, have recovered from the disease and thus acquired immunity, 

or have died from it. In the context of the basic SIR model, all are considered 

"removed" from the chain of transmission. 

In the simplest SIR model, individuals can only move from the   group to the   

group, and from the   group to the   group. The variant discussed in this paper 

does not account for factors such as repeated infections, asymptomatic carriers, 

birth and death dynamics, and other similar considerations (see the Limitations and 

Extensions of the SIR Model section for more detail). 

Any SIR model has three variables:     and  , denoting the number of people 

in each respective group. 
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The total population is denoted as N. Obviously,        . 

There are also two important constants (parameters) that are unique to each 

specific epidemic: 

Infection transfer rate   

This constant shows how often the infection is transferred from one person to 

another, i.e., how often people move from the   group to the    group. This 

constant combines the rate of encounters between people and the probability of 

infection transfer during an encounter. 

If, for instance, every infected person meets, on average, 10 people every day, 

then      ⁄  of these meetings are with susceptible people. Further, if 10%, or a 

0.1 fraction, of such meetings, on average, result in infection transfer, then, on 

average,          ⁄  susceptible people are infected every day by each 

infected person. Hence, the total number of susceptible people infected every day 

is            ⁄ . The constant   is defined as: 

  = 0.1 × 10 = 1 

 Recovery rate   

This constant shows how often sick (infected) people recover, i.e., how often 

people move from the   group to the   group. 

If, for example, the average duration of the disease is 10 days, then every day, 

on average, 1/10, or a 0.1 fraction of the sick people will recover, therefore: 

  
 

  
     

Now, the relationship between S, I, and R is examined. 

First, these numbers change over time, so they are functions of time:  ( ),  ( ) 

and  ( ). 

As mentioned above,       ⁄  susceptible people will be infected every 

day, which means that the susceptible population will decrease every day by that 

number: 

 (    )   ( )    
 ( )   ( )
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Where    appears in the formula above, it represents the small period of time 

(in 

days

)                                                                                      

                                                   

   ⁄                                                                                       

    ⁄     ⁄             ⁄  

     if the limit of the left-hand side is taken as     , the following equality 

is fair: 

   
    

 (    )   ( )

  
    

 ( )   ( )

 
 

                     -                                        ( )                

leading to the following result: 

  

  
    

   

 
   

  

 
 

 

Additionally, each day, the number of infected people will, on one hand, 

                                                                           th

rough contact, and, on the other hand, decrease by the number of infected 

individuals who will be removed, that is, by      ( ). 

 (    )   ( )    
 ( )   ( )

 
         ( )     

 (    )   ( )    
 ( )   ( )

 
         ( )     
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Finally, each day, the number of removed individuals will increase by the 

                                                                   ( )  

 (    )   ( )       ( )     
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      ( ) 

                                                                          

  

  
          

Thus, a system of three differential equations is obtained, involving the 

                                      ( )  ( )  ( )                           ⁄      ⁄
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2. Applying the SIR Model: Solutions, Parameters, and Initial Conditions 

The solution to the system of differential equations describing the evolution of 

 ( ),  ( ),  ( ) can be obtained through analytical methods in specific cases or 

more commonly through numerical techniques. One approach is to solve them 

numerically using the Euler method. 

According to the Euler method, if a function is observed over a sufficiently 

small interval around a certain point  , the function values within that interval can 

be approximated with reasonable accuracy using the formula: 

 (    )   ( )  
  

  
   

To solve the differential equations in the SIR model, it is necessary to know the 

total population  , the initial values of the three functions  ( ),  ( ),  ( ), as 

well as the constants  ,  . 

Next, a time increment    must be selected, and the following equations can 

then be used: 

 (    )   ( )  
  

  
    ( )    

 ( )   ( )

 
    

 (    )   ( )  
  

  
    ( )    

 ( )   ( )

 
       ( )     

 (    )   ( )  
  

  
    ( )     ( )     

It is most convenient to use     , meaning one day. Then, for    , the 

following holds: 

 ( )   (   )   ( )    
 ( )   ( )

 
   

 ( )   (   )   ( )    
 ( )   ( )

 
      ( )    

 ( )   (   )   ( )     ( )    
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Once the values of  ( ),  ( ) and  ( ) are obtained, the values of  ( ),  ( ) 

and  ( ) can be calculated in the same manner, followed by  ( ),  ( ) and  ( ), 

and so on. 

However,      may not be sufficiently small and could produce results that 

differ significantly from the exact solution (the actual function). 

This is illustrated in Figure 1, where the blue line represents the actual 

function, and the red line shows the solution obtained using the Euler method. 

The Euler method with         and Microsoft Excel was used to compute 

numerical solutions for all the models discussed later in this paper. 

 

 

Figure 1. Graphical illustration of the Euler method. The blue line represents 

the exact function, while the red line shows the approximate solution. 

 

Sample Model 1 has the following parameters: 

           ( )          ( )        ( )     

                  

This means that, in a population of 100000 people, there were initially 100 

infected individuals, with all others susceptible. The infection transfer rate was 

1.00, and the recovery rate was 0.10. 
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Figure 2. Initial values, parameters, and solution for Model 1 using the Euler 

method. 

 

Sample Model 2 has the following parameters: 

           ( )          ( )        ( )     

                  

This means that, in a population of 100000 people, there were initially 100 

infected individuals, with all others susceptible. The infection transfer rate was 

0.50, and the recovery rate was 0.25. 

 

Figure 3. Initial values, parameters, and solution for Model 2 using the Euler 

method. 

 

The Euler method provides more accurate results (that is, a numerical solution 

closer to the actual or exact solution) when smaller time increments are used. 
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Please refer to the Limitations of the Euler Method section later in the paper for 

further details. 

An in-depth examination of Model 1 and Model 2 reveals important insights. 

The dynamics of the number of infected individuals in these models are 

influenced by factors such as the transmission rate, recovery rate, initial population 

distribution, and contact patterns within the population. 

Model 1 shows that: 

1. The maximum fraction of infected people is 68% (68445), which represents the 

peak of the red line. 

2. The majority of the population became infected, as evidenced by the fact that the 

blue line (representing susceptible individuals) nearly reaches zero (3). 

Model 2 shows that: 

1. The maximum fraction of infected people was approximately 16% (15622). 

2. A significant portion of the population (79%) became infected, as the blue line 

(representing susceptible individuals) falls to 21% (20886). 

It is evident that the infection transfer rate is lower, and the recovery rate is 

higher in Model 2, which explains the difference. 

However, the formal criterion for determining when the epidemic reaches its 

peak is when the rate of change of infected individuals becomes zero. 

Considering the second differential equation, it can be transformed: 

  

  
  

  

 
      ( 

 

 
  ) 

Since    , the sign of     ⁄  depends on the sign of    ⁄   . This means 

that     ⁄  is positive (and hence  ( ) increases) when    ⁄    is positive: 
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Therefore, the number of infected people  ( ) continues to grow as long as 

 ( ) remains large enough to satisfy the above inequality. Accordingly, the 

epidemic will begin to subside once  ( ) becomes small enough to satisfy: 

 

 
 
 

 
 

Therefore, the critical point of the epidemic spread is characterized by the 

following equation: 

 

 
 
 

 
 

Indeed, this can be observed in both the graphs and the data tables used to plot 

them. In Model 1, the peak of the epidemic occurs at     , when  (  )  

     and: 

 

 
 
    

    
    

 

 (  )
 
      

    
      

Obviously,         is too rough an approximation; however, a more precise 

solution (        ), discussed in the Limitations of the Euler Method section 

later in the paper, shows that the peak occurs at         , with  (      )  

    . Therefore, the condition is more accurately met: 

 

 
 
    

    
    

 

 (      )
 
      

    
    

In Model 2, at the peak of the epidemic is at       ,  (    )        and 

 

 
 
    

    
   

 

 (    )
 
      

     
   

The ratio above is known as the basic reproduction number: 

   
 

 
 

Howard (Howie) Weiss of the Georgia Institute of Technology (Atlanta, GA, 

USA), in his paper The SIR Model and the Foundations of Public Health (Weiss, 

2013), proves the Epidemic Threshold Theorem, which fully supports this idea 

[10]. 

H. Weiss introduces another ratio known as the effective reproduction number: 
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 ( )

 
 
 

 
 

The theorem states that if      at the onset of an epidemic, then  ( ) 

decreases to zero as     however, if     , then  ( ) increases, reaches a 

maximum, and subsequently decreases to zero as    . Furthermore,    

 ( )  ⁄      ⁄  implies that      ( )⁄⁄ , exactly as previously deduced. 

H. Weiss also derives a formula for the maximum number of infected individuals 

in the case where the entire population is initially susceptible [10]: 

 

       (  
      
  

) 

 

For Model 1,             (  (      )   ⁄ )        

 

For Model 2,             (  (     )  ⁄ )        

 

These values are quite close to those obtained using the Euler method with 

        (68445 for Model 1 and 15622 for Model 2). The differences can be 

attributed to the approximate nature of the Euler method results and the fact that 

the initial number of susceptible individuals (99900) is slightly less than the total 

population. 

Based on the formula for     , the dependence of the      ⁄  ratio (the peak 

fraction of the infected population) on    was graphed (Figure 4). 
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Figure 4. Graph illustrating the relationship between the peak fraction of the 

infected population (     ⁄ ) and the basic reproduction number (  ). 

 

As    increases, the peak fraction of infected individuals grows at an 

increasingly slower pace. This implies, for example, that decreasing    from 4 to 3 

impacts      ⁄  more significantly than reducing     from 10 to 9. 

To reduce      ⁄ ,   can be lowered by implementing precautionary 

measures such as staying at home when sick to decrease encounter rates, wearing 

masks to reduce the probability of transmission during encounters, etc. On the 

other hand,   can be increased by shortening the average duration of illness 

through timely prophylactics and proper medical treatment. 

The Euler method was also used in MS Excel to explore how      ⁄  depends 

on  ( )  ⁄ , which refers to how the peak fraction of infected individuals is 

influenced by the initial number of susceptible people. The following graphs 

display the relationship between      ⁄  and  ( )  ⁄  for both Model 1 and Model 

2 (Figure 5 and Figure 6). 
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Figure 5. Relationship between the peak fraction of the infected population 

(     ⁄ ) and the initial fraction of susceptible individuals ( ( )  ⁄ ) for Model 1, 

where the infection transfer rate       and the recovery rate         

 

 

Figure 6. Relationship between the peak fraction of the infected population 

(     ⁄ ) and the initial fraction of susceptible individuals ( ( )  ⁄ ) for Model 2, 

where the infection transfer rate       and the recovery rate       . 

 

The graphs appear incomplete because, for certain values of  ( ), the number 

of infected individuals  ( ) does not reach its maximum within the 50-day period. 

However, since the curves closely resemble straight lines, the relationship between 

the variables is nearly linear. To illustrate this, the solution for Model 1 with an 

initial susceptible fraction of  ( )  ⁄      is shown below: 

           ( )          ( )        ( )  
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In other words, within a population of 100000 individuals, there were initially 

100 infected, 60000 susceptible, and 39900 immune (removed). The infection 

transmission rate was 1.00, and the recovery rate was 0.10. For easier comparison, 

the solution for Model 1 with S(0)/N = 99.9%—previously shown in Figure 2—is 

repeated below (Figure 7). 

 

Figure 7. Initial values, parameters, and numerical solution for Model 1 with 

 ( )  ⁄        

 

Figure 8. Initial values, parameters, and numerical solution for Model 1 with 

 ( )  ⁄      

 

Limitations and extensions of the SIR model 

The basic form of the SIR model presented in this paper has several limitations. 

It does not consider the possibility of reinfection, which is relevant for diseases 

like influenza where immunity may be short-lived—such cases are better modeled 
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without the “Removed” (R) category. The model also excludes asymptomatic 

carriers who can transmit the disease without showing symptoms; this can be 

addressed by adding a “Carrier” (C) compartment. Additionally, it overlooks 

diseases with a significant incubation period during which infected individuals are 

not yet infectious, incorporating an “Exposed” (E) group addresses this. As noted 

in the section on the mathematics of the SIR model, the total population is treated 

as constant, meaning vital dynamics such as births and deaths are not considered. 

While this may be acceptable for short-term outbreaks, it becomes problematic for 

long-lasting diseases like COVID-19 or AIDS, where demographic changes are 

significant. Including vital statistics may also require accounting for maternal 

immunity in newborns, which can be modeled by adding a “Maternal Immunity” 

(M) compartment. Vaccination effects are also not included in the basic model but 

can be represented by introducing a “Vaccinated” (V) group. These and other 

enhancements can be incorporated into extended versions of the SIR model. 

Limitations of the Euler method 

The Euler method, being a numerical approach, produces approximate results 

that can differ from the exact analytical solution. Greater accuracy is achieved 

when smaller increments of the independent variable are used. As an example, 

Figure 9 displays two solutions for Model 1 calculated with different time steps: 

        and         . The appropriate choice of    depends on the desired 

level of precision. While the discrepancy may not be immediately apparent in the 

graph, a portion of the corresponding data table reveals notable differences in the 

values of  ( ),  ( ) and  ( ), with deviations reaching nearly 35%. 
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Figure 9. Two solutions for Model 1 using different time increments (thinner 

lines correspond to the less precise solution with        ). Missing values for 

the         solution were estimated using linear interpolation. 

 

Conclusions 

The SIR model plays a pivotal role in understanding epidemic dynamics by 

compartmentalizing the population into susceptible, infectious, and removed 

groups. By utilizing mathematical principles, particularly Euler's method for 

solving differential equations, this model offers valuable insights into how 

epidemics unfold over time. The analysis of different sample models demonstrates 

that both the infection transfer rate ( ) and the recovery rate ( ) significantly 

influence the peak and the eventual decline of an epidemic. Key findings show that 

a higher infection transfer rate leads to a greater proportion of the population 

becoming infected, while a higher recovery rate accelerates the epidemic's 

resolution. 

The critical point where the epidemic peaks can be determined by the balance 

between the infection transfer rate and the susceptible population, as highlighted 

by the basic reproduction number (  ). Furthermore, the model underscores the 

importance of early intervention measures aimed at lowering   , such as reducing 

encounter rates or increasing recovery rates, to mitigate the spread and impact of 

an epidemic. 



Московский экономический журнал. № № 11. 2025 

Moscow economic journal. №  № 11. 2025 

65 
 

Despite the utility of the SIR model, it has limitations, including assumptions 

about constant population size, homogeneity of the population, and exclusion of 

other factors like re-infection or asymptomatic carriers. Nevertheless, the insights 

gained through this model can inform strategies for epidemic control and help 

prepare for future outbreaks. By understanding the mathematical foundations and 

the influence of various parameters, policymakers and health professionals can 

better predict and manage the spread of infectious diseases. 
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