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AHHOTauMs. B 1aHHOM cTaThe paccCMAaTpUBAECTCA NPUMEHEHUE MATEMaTHUYECKOTrO
MOACIUPOBAHNA JJIA aHalin3a u IMIPOTrHO3UPOBAHUA pacipoCTpaHCHUA
nHpEeKIMOHHBIX 3a0oyieBaHuii, ¢ akimeHToM Ha wMoaenu SIR (Susceptible—
Infectious—Recovered — BocnpurMuuBbIC, HHOUITUPOBAHHBIC, BBI3IOPOBEBIINE),
KOTOpas MIMPOKO HCMOJB3yeTcs B anuaemuonoruu. [IpeacraBnen oOmmii 0030p
MOJIEJIM, MOCJIE YEro BBIBOJIATCA TpH €€ (PyHIaMEHTaJbHbIX AU(epeHIInaTbHbIX
YPaBHEHUSI, ONMCHIBAIOIINE TUHAMUKY U3MEHEHHUS YMCICHHOCTU KaXKI0U U3 TPYIII
HaceJieHns. UMCIeHHbIE peleHUs] MTOJIYyYeHbl C HCIOJIb30BAHUEM METOJa Jiliiepa
JUISL IBYX NIPHMEPHBIX CIIyd4aeB, PE3yJIbTaThbl KOTOPBIX 3aTEM aHAIU3HPYIOTCSA C
IO CJIbKO BBIABIICHHUA IMHWKA IIMACMHUU U MOMEHTA Ha4Yajla €€ CIiaaad. I[OHOJ'IHI/ITCJ'IBHO
HCCIICAYCTCA B3aMMOCBA3b MCKIY BEJIMYMHON TIMKAa U HUCXOOJHBIM YHCIOM
BOCIIPUUMYHUBBIX HMHIWUBHUIAOB C IIOMOIIBIO rpa(bnquKoro a"Haimm3a. B crartbe
oOCcyXaroTcsi orpaHnueHus kak camoir moxaenu SIR, Tak m mMeroma Diinepa,
MOJIYEPKUBAETCS, UTO BBHIOOP MapamMeTpoB, TAKUX KaK KOA(P(UIMEHTHI 3apaKeHus
N BOCCTAHOBJICHH:, CYHICCTBCHHO BJIMACT HA PC3YyJIbTAaTbl MOACIMPOBAHNA. HGJ'IB

paboThl — YIIIyOUTh MOHUMAaHHWE MEXAHU3MOB PacHpoCTpaHeHUs 3a001eBaHUN U
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MIPOJIEMOHCTPUPOBATh, KaK MAaTEMAaTHYECKUE METOJBI MOTYT CIOCOOCTBOBATH

pa3paboTke A(PGhEeKTUBHBIX CTpAaTeTU KOHTPOJISI WM YNPABJICHUS JMHUACMHUSIMH.
KpOMe TOTr'0, HCCICOOBAHUC 06pamaeT BHUMAHHUC Ha IPAKTHUYCCKOC 3HAYCHHC
MATEMAaTUYCCKOTO MOACIMPOBAHHA B JIIMACMHUOJIOTHU: IIPUMCHCHHC HOI[O6HBIX
MOI[CJ'ICﬁ IMO3BOJIACT IIPOTHO3UPOBATH BO3MOJKHBIC CLICHAPHUH PA3BUTHUSA SIINACMUMU,
onieHnBaTh 3(G(HEKTUBHOCTh MPOPUIAKTHUECKUX Mep (BaKIMHALWHU, H30JIALUH,
OTpaHUYCHMs] KOHTAKTOB) M  ONTHMHM3UPOBATh pacHpeiciCHUE pPecypcoB
3npaBooxpaHeHus. Mcnonb3oBanue mozaenu SIR ciayKUT OCHOBOM JJ1s1 HOCTPOECHUS
oonee cioxubix monened — SEIR, SIRS, SEIRD u npyrux, 4tro nenaer ee
(1)YHI[aMeHTaJIBHLIM HHCTPYMCHTOM JIJIA ,Z[EUIBHCﬁIHI/IX I/ICCJ'ICIIOBaHI/Iﬁ B 00JacTH
JUHAMHUKAU I/IH(l)eKHI/IOHHBIX IMponIcCCOB.

Abstract. This article examines the use of mathematical modeling for analyzing
and predicting the spread of infectious diseases, focusing on the SIR (Susceptible—
Infectious—Recovered) model, which is widely used in epidemiology. A general
overview of the model is presented, followed by the derivation of its three
fundamental differential equations that describe the dynamics of changes in each
population group. Numerical solutions are obtained using Euler’s method for two
sample cases, and the results are then analyzed to determine the epidemic peak and
the point at which it begins to decline. Additionally, the relationship between the
height of the peak and the initial number of susceptible individuals is investigated
through graphical analysis. The paper discusses the limitations of both the SIR
model and Euler’s method, emphasizing that the choice of parameters—such as
infection and recovery rates—significantly affects the modeling results. The
purpose of this work is to deepen the understanding of disease transmission
mechanisms and to demonstrate how mathematical methods can support the
development of effective epidemic control and management strategies.
Furthermore, the study highlights the practical importance of mathematical
modeling in epidemiology: such models make it possible to predict potential

epidemic scenarios, assess the effectiveness of preventive measures (vaccination,
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isolation, contact restrictions), and optimize the allocation of healthcare resources.

The SIR model also serves as a foundation for constructing more complex
models—such as SEIR, SIRS, SEIRD, and others—making it a fundamental tool
for further research into the dynamics of infectious processes.
KiroueBble ¢Jj10Ba: YMCICHHBIN aHAIN3, MOJICTIMPOBaHUE uaeMui, moaenb SIR,
TUHAMUKa 3a00Je€BaHs, TUKOBas 3a0071€BaeMOCTh, MHPEKIIMOHHBIC 3a00JIeBaHN,
Meron — OWnepa, BOCHOPUMMYMBBIE W MHOUUHUPOBAHHBIC,  YIpaBICHUE
SIUACMHUYCCKHM ITPOICCCOM
Keywords: numerical analysis, epidemic modeling, SIR model, disease dynamics,
peak incidence, infectious diseases, Euler’s method, susceptible and infected,
epidemic management

Introduction

Epidemics have been a persistent challenge throughout human history,
claiming millions of lives through diseases such as plague, cholera, and typhoid.
Despite significant advances in medicine, new epidemics continue to emerge, some
spreading at alarming rates and causing profound societal and economic
disruptions. While many infections are relatively mild, others—such as COVID-19
and AIDS—have had catastrophic global effects. A common challenge in epidemic
control is the rapid spread of diseases, often outpacing both population growth and
timely interventions. Understanding the dynamics of disease transmission is
therefore crucial for formulating effective strategies for containment and
eradication.

The relevance of mathematical models in addressing these challenges has been
well-documented across numerous studies. Anderson and May (1991) laid
foundational work in understanding how diseases spread and how mathematical
models, particularly the SIR model, can inform control strategies [1]. Keeling and
Rohani (2008) further refined these models by exploring both theoretical
frameworks and practical applications, making their insights indispensable for the
current study [8]. The SIR model’s development by Kermack and McKendrick
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(1927) marked a pivotal moment in epidemic modeling, providing a simple yet

powerful tool for understanding the progression of infectious diseases [7]. This
model, as elaborated by Diekmann et al. (2013), remains central to epidemiological
research today, with its influence extending to numerous subsequent developments
in the field [4].

Murray (2002) contributes a broader understanding of mathematical biology,
extending the foundational knowledge of epidemic modeling to a variety of
biological systems, which helps contextualize the dynamics observed in human
populations [9]. Brauer et al. (2019) offer additional insights into mathematical
models in epidemiology, discussing the intricacies and limitations of models like
the SIR in predicting real-world epidemic outcomes [2]. Ferguson et al. (2005)
illustrate the practical application of such models in pandemic scenarios,
particularly in assessing the effectiveness of mitigation strategies [5]. Colizza et al.
(2007) take a different approach by incorporating network theory, showing how
transportation systems can accelerate the global spread of epidemics, which further
emphasizes the complexity of predicting disease dynamics [3].

In light of these contributions, this article explores the application of
mathematical methods to the analysis and forecasting of epidemic behavior, with a
particular focus on the SIR model. The discussion begins with an overview of the
model and the mathematical derivation of its three fundamental differential
equations. Euler’s method is then employed to obtain numerical solutions for two
example scenarios. These results are analyzed to identify key points in the
epidemic curve, such as the peak and the point of decline, with particular attention
paid to how the initial number of susceptible individuals influences these
outcomes. Graphical representations support the analysis, illustrating how different
parameters can alter the trajectory of an epidemic. The article also critically
examines the limitations of both the SIR model and Euler’s method, highlighting
how variations in parameter choices can impact numerical solutions and the

accuracy of predictions. By combining theoretical insights and practical
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applications, this article contributes to the ongoing dialogue on how mathematical

models can enhance our understanding of epidemic dynamics and guide public
health responses.
1. The SIR Model: Concepts and Mathematical Foundations

The SIR (Susceptible-Infectious-Removed) model belongs to the class of
compartmental methods because it divides the entire population potentially
involved in the spread of a disease into major groups (compartments).

In fact, the SIR model can be applied not only to people but also to animals and
plants.

The basic SIR model divides the population into three compartments:
susceptible, infected, and recovered [6].

The first compartment, S, comprises individuals susceptible to the disease—
that is, those who can get sick. Quite often, at the onset of a disease, this group
includes the entire population of a country, region, town, and similar areas, except
for those already infected. Also, a portion of the population may be immune to the
disease, such as through vaccination, so they won’t be in the S group.

The second compartment, I, includes individuals who are already infectious—
in other words, those who are currently sick and can transmit the disease.

The third compartment, R, consists of individuals who were either immune
from the beginning, have recovered from the disease and thus acquired immunity,
or have died from it. In the context of the basic SIR model, all are considered
"removed" from the chain of transmission.

In the simplest SIR model, individuals can only move from the S group to the I
group, and from the I group to the R group. The variant discussed in this paper
does not account for factors such as repeated infections, asymptomatic carriers,
birth and death dynamics, and other similar considerations (see the Limitations and
Extensions of the SIR Model section for more detail).

Any SIR model has three variables: S, I and R, denoting the number of people

in each respective group.
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The total population is denoted as N. Obviously, N = S + 1 + R.

There are also two important constants (parameters) that are unique to each
specific epidemic:

Infection transfer rate g8

This constant shows how often the infection is transferred from one person to
another, i.e., how often people move from the S group to the ,I group. This
constant combines the rate of encounters between people and the probability of
infection transfer during an encounter.

If, for instance, every infected person meets, on average, 10 people every day,
then 10 X S/N of these meetings are with susceptible people. Further, if 10%, or a
0.1 fraction, of such meetings, on average, result in infection transfer, then, on
average, 0.1 X 10 X S/N susceptible people are infected every day by each
infected person. Hence, the total number of susceptible people infected every day
isI x 0.1 x10xS/N. The constant g is defined as:

B=01x10=1
Recovery rate y

This constant shows how often sick (infected) people recover, i.e., how often
people move from the I group to the R group.

If, for example, the average duration of the disease is 10 days, then every day,

on average, 1/10, or a 0.1 fraction of the sick people will recover, therefore:
1
y = 0° 0.1

Now, the relationship between S, I, and R is examined.

First, these numbers change over time, so they are functions of time: S(t), I(t)
and R(t).

As mentioned above, I x 1 x S/N susceptible people will be infected every
day, which means that the susceptible population will decrease every day by that
number:

S(t) x I(t) o

S(t+At) =5(t)—1x N

At
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S(t+At)—S(t)=—1xMxAt

S(t+At)—S() . S(t) x I(¢t)
At ST YT N

Where At appears in the formula above, it represents the small period of time
(in
days
) over which the change in the S group is observed, assuming its size remains constan
On the right-hand side, At is multiplied because I X 1
X S/N is the daily number of infected people, while, for example, the hourly number v
X1/24xS/N =1x%x0.0417 X S/N.

Now, if the limit of the left-hand side is taken as At — 0, the following equality

is fair:

S(t+Ab) - S(0) S(0) X I(6)
lim =—-1X—
At—0 At N

The limit on the left-hand side represents the derivative of S(t) by definition,

leading to the following result:

Additionally, each day, the number of infected people will, on one hand,
increase by the number of susceptible individuals who will become infected th
rough contact, and, on the other hand, decrease by the number of infected
individuals who will be removed, that is, by 0.1 x I(t).

S(t) x I(t)
I(t+At) =1(t) + 1><T><At—0.1 X I(t) X At

S(t) x I(t)
I(t+At) —I(t) = 1XTXM_O'1 x I(t) X At

I(E+A0 - 1) _ SO xI(0)
At AT N T

0.1 x I(t)
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O I(t+At) —I(t) S(t) xI(t)
A]%I_T)IO At —1XT—0.1X1(t)
Using the definition of the derivative, the following is obtained:

A3 i =p3t
dt N ' =ByY

Finally, each day, the number of removed individuals will increase by the
number of infected individuals who will be removed, that is, by 0.1 X I(t).
R(t+ At) = R(t) + 0.1 X I(t) X At
R(t+At) —R(t) = 0.1 x I(t) X At

R+ At) —R(t)
lim
At—0 At

Here, by using the definition of the derivative, the following is obtained:

= 0.1 X I(t)

dR—leI— I
dt -V

Thus, a system of three differential equations is obtained, involving the

independent variable t, the functions S(t), I(t), R(t), and their derivatives dS/dt,dl/

. dR/dkt.
as SI
- P
dl S1
@ Pw"
dR
a =

The model assumes that the total population N is constant:
N=St)+I(t)+R({)=C
This follows from the fact that the derivative of N is zero:

dN

ds dl dR _ SI <51
dt 4

d
=a(5(t)+l(t)+R(t)):E+E+E——ﬂﬁ+ ﬁ—)/l)‘H/I:O
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Hence, N is constant.

2. Applying the SIR Model: Solutions, Parameters, and Initial Conditions

The solution to the system of differential equations describing the evolution of
S(t), 1(t), R(t) can be obtained through analytical methods in specific cases or
more commonly through numerical techniques. One approach is to solve them
numerically using the Euler method.

According to the Euler method, if a function is observed over a sufficiently
small interval around a certain point x, the function values within that interval can

be approximated with reasonable accuracy using the formula:

Ax) = de
flx+ x)~f(x)+a X

To solve the differential equations in the SIR model, it is necessary to know the
total population N, the initial values of the three functions S(0), 1(0), R(0), as
well as the constants £, y.

Next, a time increment At must be selected, and the following equations can

then be used:

S(t) x I(t)
— X
N

S(t + At) = S(b) +§At =S(t)—pB x At

S(t) x I1(¢t)

XAt —vy X I(t) X At
N y X I(t)

I(t + At) = I(t) +%At =I(t)+ B x

dR
R(t + At) = R(t) +—-At = R(t) +y xI(t) X At

It is most convenient to use At = 1, meaning one day. Then, for t = 0, the

following holds:
S(0) x 1(0)
— X1

N
S(0) x 1(0)
— X

N
R(1)=R(O+1)=RO0)+yxI(0)x1

S(1) =S50+ 1) =S(0) — B x

1(1))=1(0+1)=1(0) + 8 X 1—-yxI(0)x1

54



MockoBckuit a5koHOMUYecKui xypHail. Ne Ne 11. 2025
Moscow economic journal. Ne Ne 11. 2025
Once the values of S(1), I(1) and R(1) are obtained, the values of S(2), 1(2)

and R(2) can be calculated in the same manner, followed by S(3), 1(3) and R(3),
and so on.

However, At = 1 may not be sufficiently small and could produce results that
differ significantly from the exact solution (the actual function).

This is illustrated in Figure 1, where the blue line represents the actual
function, and the red line shows the solution obtained using the Euler method.

The Euler method with At = 0.25 and Microsoft Excel was used to compute

numerical solutions for all the models discussed later in this paper.

A
y

Figure 1. Graphical illustration of the Euler method. The blue line represents

the exact function, while the red line shows the approximate solution.

Sample Model 1 has the following parameters:
N =100000 S(0) =99900 I(0)=100 R(0)=0
B = 1.00 y =0.10

This means that, in a population of 100000 people, there were initially 100
infected individuals, with all others susceptible. The infection transfer rate was

1.00, and the recovery rate was 0.10.
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N = 100000 At=0.25
100,000 S (0) = 99900
;;l’ 1(0) = 100
& 80,000 - R(0)=0
B =1.00
y=0.10
60,000
t S(t) 1(t) R(t)
0.00 99900 100 0
40,000 1 0.25 99875 122 3
050 99844 150 6
20,000 0.75 99807 184 9
0 49.25 3 1637 98360
0 10 20 30 40 50 49,50 3 1506 98401
s (t) 1(t) R (t) days 49.75 3 1556 98441
50.00 3 1517 98479

Figure 2. Initial values, parameters, and solution for Model 1 using the Euler

method.

Sample Model 2 has the following parameters:
N =100000 S(0)=99900 1I1(0)=100 R(0)=0
B = 0.50 y =0.25

This means that, in a population of 100000 people, there were initially 100
infected individuals, with all others susceptible. The infection transfer rate was

0.50, and the recovery rate was 0.25.

N = 100000 At=0.25
100,000 - 5(0) = 99900
% 1(0) = 100
& 80,000 R(0)=0
B=0.50
y=0.25
60,000
t S(t) 1(t) R(t)
0.00 99900 100 0
40,000 0.25 99888 106 6
0.50 99874 113 13
20,000 0.75 99860 120 20
0 49.25 21003 1544 77453
0 10 20 30 40 50 4950 20963 1488 77549
s (1) ) R (1) days 49.75 20924 1434 77642
50.00 20886 1382 77732

Figure 3. Initial values, parameters, and solution for Model 2 using the Euler

method.

The Euler method provides more accurate results (that is, a numerical solution

closer to the actual or exact solution) when smaller time increments are used.
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Please refer to the Limitations of the Euler Method section later in the paper for

further details.

An in-depth examination of Model 1 and Model 2 reveals important insights.

The dynamics of the number of infected individuals in these models are
influenced by factors such as the transmission rate, recovery rate, initial population
distribution, and contact patterns within the population.

Model 1 shows that:
1. The maximum fraction of infected people is 68% (68445), which represents the
peak of the red line.
2. The majority of the population became infected, as evidenced by the fact that the
blue line (representing susceptible individuals) nearly reaches zero (3).

Model 2 shows that:
1. The maximum fraction of infected people was approximately 16% (15622).
2. A significant portion of the population (79%) became infected, as the blue line
(representing susceptible individuals) falls to 21% (20886).

It is evident that the infection transfer rate is lower, and the recovery rate is
higher in Model 2, which explains the difference.

However, the formal criterion for determining when the epidemic reaches its
peak is when the rate of change of infected individuals becomes zero.

Considering the second differential equation, it can be transformed:

dl SI S
=y -r=1x(s5-7)

Since I = 0, the sign of dI/dt depends on the sign of §S/N — y. This means

that dI/dt is positive (and hence I(t) increases) when 8 S/N — y is positive:
S
py—v=>0
f N

_>_
y S
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Therefore, the number of infected people I(t) continues to grow as long as

S(t) remains large enough to satisfy the above inequality. Accordingly, the
epidemic will begin to subside once S(t) becomes small enough to satisfy:

B N

_S_
y S

Therefore, the critical point of the epidemic spread is characterized by the
following equation:
B N
y S
Indeed, this can be observed in both the graphs and the data tables used to plot
them. In Model 1, the peak of the epidemic occurs at t = 11, when S(11) =
8611 and:

g 1.00 N 100000
= = =11.6

=——=10 = =
y 0.10 S(11) 8611

Obviously, 10 ~ 11.6 is too rough an approximation; however, a more precise

solution (At = 0.025), discussed in the Limitations of the Euler Method section
later in the paper, shows that the peak occurs at t = 10.375, with §(10.375) =
9991. Therefore, the condition is more accurately met:

B 1.00 N 100000

=——=10 = =
Yy~ 0.10 $(10.375) ~ 9991
In Model 2, at the peak of the epidemic is at t = 27.5, S(27.5) = 49982 and
B 050 N 100000

—_= =2 = = ~
y 0.25 S(27.5) 49982
The ratio above is known as the basic reproduction number:
RO == E
14

Howard (Howie) Weiss of the Georgia Institute of Technology (Atlanta, GA,
USA), in his paper The SIR Model and the Foundations of Public Health (Weiss,
2013), proves the Epidemic Threshold Theorem, which fully supports this idea
[10].

H. Weiss introduces another ratio known as the effective reproduction number:
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EONY
N vy

The theorem states that if R, <1 at the onset of an epidemic, then I(t)
decreases to zero as t — o« however, if R, > 1, then I(t) increases, reaches a
maximum, and subsequently decreases to zero as t — c. Furthermore, R, =
S(0)/N x B/y < 1implies that 8/y < N/S(0), exactly as previously deduced.
H. Weiss also derives a formula for the maximum number of infected individuals

in the case where the entire population is initially susceptible [10]:

1+1nR0)

Lpax = N X (1 R,

For Model 1, I,,, = 100000 X (1 — (1 +1n10)/10) ~ 66974
For Model 2, I,,,,,, = 100000 X (1 — (1 +In2)/2) ~ 15343

These values are quite close to those obtained using the Euler method with
At = 0.25 (68445 for Model 1 and 15622 for Model 2). The differences can be
attributed to the approximate nature of the Euler method results and the fact that
the initial number of susceptible individuals (99900) is slightly less than the total
population.

Based on the formula for I,,,,,, the dependence of the I,,,, /N ratio (the peak

fraction of the infected population) on R, was graphed (Figure 4).
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i Imax/N Ro

Figure 4. Graph illustrating the relationship between the peak fraction of the

infected population (I,,,,,/N) and the basic reproduction number (R,).

As R, increases, the peak fraction of infected individuals grows at an
increasingly slower pace. This implies, for example, that decreasing R, from 4 to 3
impacts I,,,,,,/N more significantly than reducing R, from 10 to 9.

To reduce R, =pf/y, B can be lowered by implementing precautionary
measures such as staying at home when sick to decrease encounter rates, wearing
masks to reduce the probability of transmission during encounters, etc. On the
other hand, y can be increased by shortening the average duration of illness
through timely prophylactics and proper medical treatment.

The Euler method was also used in MS Excel to explore how I,,,,,/N depends
on S(0)/N, which refers to how the peak fraction of infected individuals is
influenced by the initial number of susceptible people. The following graphs
display the relationship between I,,,,,/N and S(0)/N for both Model 1 and Model
2 (Figure 5 and Figure 6).
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S(0)/N Imax/N
80% 99.9% 68.4%
z 95% 63.9%
Es 90% 59.3%
E 85% 54.8%
60% - 80% 50.3%
75% 45.8%
70% 41.4%
65% 37.0%
40% - 60% 32.7%
55% 28.5%
50% 24.4%
45% 20.3%
20% 40% 16.4%
35% 12.7%
30% 9.2%
25% 6.0%
0% 20%
0% 20% 40% 60% 80% 100% 15%
—o—Imax/N S(0)/N 10%
5%

Figure 5. Relationship between the peak fraction of the infected population
(I,ax/N) and the initial fraction of susceptible individuals (S(0)/N) for Model 1,

where the infection transfer rate § = 1.0 and the recovery rate y = 0.10.

S(0)/N Imax/N

20% 99.9% 15.62%
= 95% 13.19%
Es 90% 10.85%
E 85% 8.67%
15% 80% 6.67%
75% 4.87%

70%

65%

10% 60%

55%

50%

45%

5% 40%

35%

30%

25%

0% 20%

0% 20% 40% 60% 80% 100% 15%

o tmax/N st/ 0%

5%

Figure 6. Relationship between the peak fraction of the infected population
(I,ax/N) and the initial fraction of susceptible individuals (S(0)/N) for Model 2,

where the infection transfer rate § = 0.5 and the recovery rate y = 0.25.

The graphs appear incomplete because, for certain values of S(0), the number
of infected individuals I1(t) does not reach its maximum within the 50-day period.
However, since the curves closely resemble straight lines, the relationship between
the variables is nearly linear. To illustrate this, the solution for Model 1 with an
initial susceptible fraction of S(0)/N = 60% is shown below:

N = 100000 S(0) = 60000 I(0)=100 R(0)=
40000
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p = 1.00 y =0.10

In other words, within a population of 100000 individuals, there were initially
100 infected, 60000 susceptible, and 39900 immune (removed). The infection
transmission rate was 1.00, and the recovery rate was 0.10. For easier comparison,
the solution for Model 1 with S(0)/N = 99.9%—previously shown in Figure 2—is
repeated below (Figure 7).

N = 100000 At=0.25
100,000 s (O) — 99900
= 1(0) = 100
§ 80,000 | R(0)=0
B=1.00
v=0.10
60,000
t S (t) 1(t) R(t)
0.00 99900 100 0
40,000 1 025 99875 122 3
050 99844 150 6
20,000 0.75 99807 184 9
0 49.25 3 1637 98360
0 10 0 30 40 50 49.50 3 1596 98401
—5S(t) —I(t) —R(t) days 48.75 3 1556 98441
50.00 3 1517 98479

Figure 7. Initial values, parameters, and numerical solution for Model 1 with
S(0)/N =99.9%

N = 100000 At=0.25
100,000 S (0) = 60000
2 1(0) = 100
§ 80,000 R (0) = 39900
p=100
y=0.10
60,000
t s (t) 1(t) R(t)
0.00 60000 100 39900
40,000 1 0.25 59985 113 39903
0.50 59968 127 39905
20000 0.75 59949 142 39908
0 49.25 153 1803 98044
0 10 20 30 40 50 49.50 152 1759 98089
—Sx () —Ix(t) —Rx (1) days 49.75 151 1716 98133
50.00 151 1673 98176

Figure 8. Initial values, parameters, and numerical solution for Model 1 with
S(0)/N =60%

Limitations and extensions of the SIR model
The basic form of the SIR model presented in this paper has several limitations.
It does not consider the possibility of reinfection, which is relevant for diseases

like influenza where immunity may be short-lived—such cases are better modeled
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without the “Removed” (R) category. The model also excludes asymptomatic

carriers who can transmit the disease without showing symptoms; this can be
addressed by adding a “Carrier” (C) compartment. Additionally, it overlooks
diseases with a significant incubation period during which infected individuals are
not yet infectious, incorporating an “Exposed” (E) group addresses this. As noted
in the section on the mathematics of the SIR model, the total population is treated
as constant, meaning vital dynamics such as births and deaths are not considered.
While this may be acceptable for short-term outbreaks, it becomes problematic for
long-lasting diseases like COVID-19 or AIDS, where demographic changes are
significant. Including vital statistics may also require accounting for maternal
immunity in newborns, which can be modeled by adding a “Maternal Immunity”
(M) compartment. Vaccination effects are also not included in the basic model but
can be represented by introducing a “Vaccinated” (V) group. These and other
enhancements can be incorporated into extended versions of the SIR model.
Limitations of the Euler method

The Euler method, being a numerical approach, produces approximate results
that can differ from the exact analytical solution. Greater accuracy is achieved
when smaller increments of the independent variable are used. As an example,
Figure 9 displays two solutions for Model 1 calculated with different time steps:
At = 0.25 and At = 0.025. The appropriate choice of At depends on the desired
level of precision. While the discrepancy may not be immediately apparent in the
graph, a portion of the corresponding data table reveals notable differences in the

values of S(t), I1(t) and R(t), with deviations reaching nearly 35%.
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t s Ix{t)  Rx{t) sy o R

100,000 - 7000 73643 2532 345 B105 16304 1991
025 734 23E3 3103 B2 1659 20m
7050 7780 M05T 3162 B039 e 207
7075 72343 2aa3 ;2 sowe 118l un

790 e 383 o33 14 s
80,000 7125 71455 25200 3345 004D 17785 2195
7150 71005 2S5 M08 7907 18058 223

people

A7S 0S50 IST7 B2 79374 18350 207
720 70092 26370 3537 79041 1864 2317
7215 69630 26767 3503 78908 18934 238
60,000 7250 69164 17166 370 78375 19207 2399
7275 6804 ST 3738 77998 19555 2047
7300 681 pE2 3807 776 19884 2405
7305 6744 83 377 7745 2023 2543
7350 67263 8780 348 76868 20541 2501
40,000 - 7.375 66779 29201 4020 76491 20870 2639
7000 66202 19615 D3 78114 21199 2687
7.425 65801 30032 4167 75738 25 275
7450 65307 s a2 75361 s6 2
7475 6ME0  MET2 438 7434 2831
20,000 - 7500 6830 31295 4395 74607 287
TS5 63806 37H0 AATA 74188 28T 29%
7550 63300 32147 4553 73068 23241 29m
TS 62792 3575 4833 73348 23604 3048
7.600 62280 3005 478 72928 23968 3104
625 6176 a3 4797 72508 24331 3161
7.650 61250  3sE0 4Bl 72088 24605 3207
7675 60731 3303 4965 71668 25050 317
7700 60211 34738 5051 7148 2542 330

—5Sx [t) JR— 5 (T) ——Rx (tJ 75(1.) 7'(1’) 7R(t) daVS 7.725 59688 35174 5138 70828 25786 3386

7750  SO163 35611 5226 70408 26150 3442

2
2185
22513

0

0 10 20 30 40 50

Figure 9. Two solutions for Model 1 using different time increments (thinner
lines correspond to the less precise solution with At = 0.25). Missing values for

the At = 0.25 solution were estimated using linear interpolation.

Conclusions

The SIR model plays a pivotal role in understanding epidemic dynamics by
compartmentalizing the population into susceptible, infectious, and removed
groups. By utilizing mathematical principles, particularly Euler's method for
solving differential equations, this model offers valuable insights into how
epidemics unfold over time. The analysis of different sample models demonstrates
that both the infection transfer rate (8) and the recovery rate (y) significantly
influence the peak and the eventual decline of an epidemic. Key findings show that
a higher infection transfer rate leads to a greater proportion of the population
becoming infected, while a higher recovery rate accelerates the epidemic's
resolution.

The critical point where the epidemic peaks can be determined by the balance
between the infection transfer rate and the susceptible population, as highlighted
by the basic reproduction number (R,). Furthermore, the model underscores the
importance of early intervention measures aimed at lowering R, such as reducing
encounter rates or increasing recovery rates, to mitigate the spread and impact of

an epidemic.
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Despite the utility of the SIR model, it has limitations, including assumptions

about constant population size, homogeneity of the population, and exclusion of
other factors like re-infection or asymptomatic carriers. Nevertheless, the insights
gained through this model can inform strategies for epidemic control and help
prepare for future outbreaks. By understanding the mathematical foundations and
the influence of various parameters, policymakers and health professionals can
better predict and manage the spread of infectious diseases.
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